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ABSTRACT

Let G2(R)×Sp6(R) and G2(R)×F4(R) be split dual pairs in split E7(R)

and E8(R), respectively. It is known that the exceptional correspondences

for these dual pairs are functorial on the level of infinitesimal characters.

In this paper we show that these dual pair correspondences are functorial

for the minimal K-types of principal series representations.

1. Split real groups of type En

The Cartan decomposition for split real groups of type En can be described by

Jordan algebras of rank 4, as it has been shown by Kostant and Brylinski in [3].

To this end, let J = Jn(Q) be a Jordan algebra of n × n-hermitian symmetric

matrices over a composition algebra Q. To each Jordan algebra, J , one can

attach a simple Lie algebra k = k(J) with a short Z-filtration

k = k−1 ⊕ k0 ⊕ k1
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such that k1 ∼= J . The algebra k has n strongly orthogonal roots α1, . . . , αn

corresponding to the diagonal entries of J . Let

ψ =
1

2
(α1 + · · · + αn)

Of special interest to us is the case n = 4, in which case 〈ψ, ψ〉 = 2. Let p be

the irreducible k-module of highest weight ψ. Then the exceptional lie algebras

of type En have Cartan decomposition

g = k ⊕ p

where p ∼= Vψ , as a k-module, and k = k(J4(Q)) where Q is a composition algebra

over C of dimension 1, 2 and 4 for E6, E7 and E8, respectively. The minimal

representation (the corresponding (g,K)-module) has K-types

V = ⊕∞

i=0Viψ

This (g,K)-module corresponds to a representation of the simply connected

Chevalley group of type En. This representation is faithful except for E7 when

the center µ2 acts trivially.

The dual pairs. Simply connected Chevalley group En(R) contains a split

dual pair H × G2 where H is SL3(R), Sp6(R) and F4(R) respectively. Let K1

and K2 = SU2,l×µ2
SU2,s denote the maximal compact subgroup of H and G2,2

respectively. The two factors of K2 correspond to a pair of perpendicular roots,

one long and one short, as the subscripts indicate. The possible K and K1 are

tabulated below.

Split group K p = V (ψ) H K1

E6 Sp8/µ2 V (̟4) = ∧4C8 − ∧2C8 SL3(R) SO3

E7 SU8/µ2 V (̟4) = ∧4
C

8 Sp6(R) U3

E8 Spin16/µ2 V (̟8) F4 SU2 ×µ2
Sp6

For root systems and weights, we follow the enumeration of Bourbaki [1].

We shall now describe how K1×K2 embeds into K. Let k2 = sl(2)s+sl(2)l be

the complexified Lie algebra of K2. Recall that k = k(J4(Q)) has four strongly

orthogonal roots. The long root sl(2)l embeds as sl(2) corresponding to the root

α1 and the short root sl(2)s embeds diagonally into three sl(2) corresponding

to the remaining three roots. The centralizer of k2 in k is k1.

The Langlands quotients. Let π1 and π2 be irreducible Harish–Chandra

modules of h and g2 respectively. Let

(1) Vmin → π1 ⊠ π2
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be a nonzero morphism of (h× g2)-modules. As established in [4] (see also [7]),

the infinitesimal character of π1 determines the infinitesimal character of π2,

and conversely. If x̟1 + y̟2 is the infinitesimal character of π2, then π1 has

infinitesimal character x̟1 + (x+ 3y)̟2, (x+ 2y, x+ y, y), x̟4 + y̟3 + ρ(sl3)

for h = sl3, sp6, f4 respectively. We would like to refine this information in the

case when π1 and π2 are Langlands quotients of principal series representations.

More precisely, let B1 = M1A1N1 and B2 = M2A2N2 denote Borel subgroups

of H and G2, respectively. Note that M1 = µ
r(H)
2 , where r(H) is the rank of H .

Likewise, M2 = µ2
2. Let σi be a representation of Mi and let λi be a dominant

weight of the Lie algebra ai. We set I1(σ1, λ1) to be the Harish–Chandra module

of the normalized induced representation

IndHM1A1N1
(σ1 ⊗ aλ1).

Similarly we define I2(σ2, λ2) which is a Harish–Chandra module of G2. Next,

we specify a minimal Ki type, denoted by τ(σi), contained in the principal series

Ii(σi, λi). This Ki-type depends only on the Weyl group conjugation class of σi,

and the restriction of τ(σi) to Mi is a direct sum, with multiplicity one, of all

characters of Mi Weyl group conjugated to σi. In particular, τ(σ′
i) is contained

in Ii(σ
′′
i , λi) if and only if the characters σ′

i and σ′′
i are conjugated by the Weyl

group. This minimal Ki-type is also known as the fine Ki-type and small Ki-

type in [10]. The minimal Ki-type τ(σi) is contained in the unique irreducible

quotient Ji(σi, λi) of Ii(σi, λi). If σi is the trivial character of Mi, then τ(σi) is

the trivial Ki-type and Ji(σi, λi) is a spherical representation. Other cases are

tabulated below. These were also computed in Table 5.8 in [9].

Table 1

G2 SL3(R) Sp6(R) F4

C ⊠ C C C C ⊠ C

C ⊠ S2(C2) C3 ∧2C3 C2
⊠ C6,

S2(C2) ⊠ C

Remark: Note that the list does not include two minimal U3-types: C3 and

∧3C3. This is because µ2 the center of E7, which is also the center of Sp6(R),

acts trivially on the minimal representation.

Theorem 1: Suppose Vmin → J1(σ1, λ1)⊠J2(σ2, λ2) is a nonzero morphism of

(h × g2)-modules. Let τi be the minimal Ki-type of Ji(σi, λi), i = 1, 2. Then

τ1 and τ2 are on the same row of the above table. Moreover, if H = F4, then

representations with the minimal K1-type S2(C2)⊠C do not appear as quotients

of Vmin.
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We remark that an irreducible spherical representation is uniquely determined

by its infinitesimal character. In §3, we will discuss the situations when the

infinitesimal characters are generic . In that case we have more precise results

(Theorem 6 and Theorem 9).

Since J1(σ1, λ1) and J2(σ2, λ2) are generated by their minimal Ki-types and

Vmin|K =
∑

n VK(nλ0), the above theorem follows immediately from the follow-

ing technical lemma.

Lemma 2: Let τ1 and τ2 be nontrivial minimal K1-type and K2-type respec-

tively as in the third row of the above table. Then

(i) HomK1×K2
(1K1

⊠ τ2, Vnψ) = 0 for all n ∈ N and

(ii) HomK1×K2
(τ1 ⊠ 1K2

, Vnψ) = 0 for all n ∈ N.

Furthermore, in the case H = F4, HomK1
(Sr(C2) ⊠ Ss(C6), Vnψ) = 0 unless

r ≤ s and r ≡ smod 2.

This was proven in [2] in the case E6, and in this paper we will only deal with

E7 and E8. Note that the group K1×K2 is much smaller than K. In particular,

the lemma does not follow from any of the known, classical, branching rules.

We also do not develop any new branching rules. In order to illustrate the main

idea consider the first case of the above Lemma. As a first step, we calculate

K1×SU2,l invariants in Vnψ. This is done on a case by case basis and is the most

difficult part of this paper. Part (i) of the lemma states that the representation

S2(C2) does not appear in the space of K1 ×SU2,l invariants. Since the highest

weight of S2(C2) is 2 it suffices to show that the dimension of the weight 4

space is the same as the dimension of the weight 2 space. In fact, using a nice

trick, one can show that the dimension of the weight 2 space is the same as the

dimension of the weight −4 space. A similar trick works for the case (ii). In

addition, in the case of E8, we show that the K1-types Sr(C2)⊠Ss(C6) does not

appear in the minimal representation unless s ≥ r and r ≡ s (mod 2). This

gives severe restrictions on possible F4-quotients of the minimal representation.

Acknowledgement: The first author would like to thank the University of

Utah and RIMS at Kyoto University for their hospitality while part of this paper

was written.

2. Generic principal series representations

In this section, we will show that if the infinitesimal character λ1 of π1 in (1)

is generic (which we will define below), then πi is isomorphic to Ii(σ1, λ1) (for

i=1, 2) which is irreducible.
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First we recall a theorem of Speh and Vogan [8]. There is also a converse

statement but we do not need it here.

Theorem 3: Let P = MAN be a cuspidal parabolic subgroup of a real re-

ductive group G. Let TM be a compact Cartan subgroup of M . Let Hλ be a

discrete series representation of M with infinitesimal character λ. We consider

the normalized induced principal series representation

IndGP (Hλ ⊠ aν ⊠ 1)

of G with infinitesimal character γ = (λ, ν). Suppose γ is nonsingular. If

the principal series representation above is reducible, then there exists a non-

compact root α of TMA such that n = 2(α, γ)/(α, α) is a positive integer.

The above theorem leads us to the following definition: A weight γ is called

algebraically integral with respect to a root α if 2(α, γ)/(α, α) is an integer.

In this paper, we say that the weight γ is generic if it is not algebraically

integral to any root α in the root system.

Lemmas 4 and 5 below follow from Theorem 3.

Lemma 4 (generic representations of G2(R)):

• The following two statements are equivalent:

(i) The weight λ2 := x̟1 + y̟2 is generic with respect to the root

system of G2.

(ii) None of the following six numbers are integers: x, y, x+y, x+2y, x+

3y, 2x+ 3y.

• If π2 is an irreducible Harish–Chandra module of G2 with infinitesimal

character λ2 satisfying either (i) or (ii) above, then π2 is the irreducible

principal series representation I2(σ2, λ2) for some character σ2 of M2.

Proof: Items (i) and (ii) are equivalent by considering 2(α, λ2)/(α, α) for all

roots α of G2. Given π2 in the lemma, then it is the Langlands quotient of

I2(σ2, λ2) for some character σ2 of M2. By Theorem 3, I2(σ2, λ2) is irreducible.

This proves the lemma.

Lemma 5 (generic representations of Sp6(R)):

• The following two statements are equivalent:

(i) The weight λ1 := (x+2y, x+y, y) is generic with respect to the root

system of Sp6(R).

(ii) None of the following six numbers are integers: x, y, x+y, x+2y, x+

3y, 2x+ 3y.
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• If π1 is an irreducible Harish–Chandra module of Sp6(R) with infinites-

imal character λ1 satisfying either (i) or (ii) above, then π1 is the irre-

ducible principal series representation I1(σ1, λ1) for some character σ1 of

M1.

The proof of the lemma is similar to the previous one. We will call π1 and π2

in the above two lemmas generic principal series representation.

In the notation of the above two lemmas, the correspondence of infinitesimal

characters for the dual pair G2×Sp6(R) is given by λ1 ↔ λ2. We can incorporate

these into Theorem 1 and we have the following result.

Theorem 6: Suppose π1 ⊠ π2 is a quotient of the minimal representation of

E7. Then π1 is a generic spherical principal series representation of Sp6(R) with

infinitesimal character λ1 if and only if π2 is a generic spherical principal series

representation of G2 with infinitesimal character λ2.

Representations of split F4. Suppose π1 is a representation of the split F4

whose infinitesimal character is λ1 := x̟1 +y̟2+ρ(sl3) where x and y satisfies

Lemma 4 (ii). We would like to know all possible Langlands parameters it can

have. We assume that π1 is the quotient of the principal series representation

(2) IndF4

MAN (Hλ ⊠ aν ⊠ 1)

where MAN is a cuspidal representation of F4 and Hλ is a discrete series rep-

resentation of M with Harish–Chandra parameter λ.

Lemma 7: Suppose π1 satisfies the above assumptions, then the parabolic sub-

group P = MAN in (2) is either

(i) the Borel subgroup, or

(ii) it is the parabolic subgroup corresponding to the long simple root α1 or

α2, and the connected component of M is M0 = SL2(R). The discrete

series Hλ of M has Harish–Chandra parameter λ = 1 or 2.

Proof: We assume that P is not the Borel subgroup. Let α be a simple

root in M . Then λ + ρ(M) is algebraically integral with respect to α. Let

λ1 := x̟1 + y̟2 + ρ(sl3). From the consideration of infinitesimal characters,

w(λ1) = (λ, ν) for some w in the Weyl group. Since (0, ν) is perpendicular to α

and ρ(M) is algebraically integral with respect to α, we conclude that

(3) 2(λ1, α
′)/(α′, α′) ∈ Z
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where α′ = w−1α. Suppose α′ is short root, then a check by hand shows that

under the assumptions in Lemma 4(ii), (3) is impossible. This implies that α is

a long simple root, that is α = α1 or α2.

A similar check shows that (3) holds if and only if α′ = w−1α is either α1, α2

or α1 + α2. Note that M0 cannot be SL3(R) because it does not have discrete

series representation. Hence M0 = SL2(R) and this proves (i). The restriction

of λ1 to the diagonal Hα ∈ sl2 corresponding to α is either 0,±1 or ±2. We can

remove the negative signs since SL2(R)± ⊆M . This proves (ii).

Next we list all the possible minimal K1-types of (2) satisfying the last lemma.

If the parabolic subgroup is the Borel subgroup, then the minimal K1-types are

given in the last column of Table 1. If the parabolic is not the Borel subgroup,

then the K1-types are given in the following table.

Table 2
Minimal K1-types

λ = 1 S4(C2) ⊠ 1Sp6
and S3(C2) ⊠ C6

λ = 2 S6(C2) ⊠ 1Sp6
and S5(C2) ⊠ C

6

The proof is a little long but not hard so we will leave it to the reader.

A degenerate principal series representation of F4. Let P12 = M12 ·

(R+)2 ·N12 be the (non-cuspidal) standard parabolic subgroup whose Levi factor

M12 has simple long roots {α1, α2}. Let φi: SL2(R) → F4 be the homomorphism

induced by the simple real root αi. We have

M12 = SL3(R) × L4

where L4 is the Klien four group generated by φ3(−1) and φ4(−1).

Let I12(x̟4 + y̟3) denote the Harish–Chandra module of the normalized

induced spherical degenerate principal series representation

(4) IndF4

M12·(R+)2·N12
(1M12

⊠ ax̟4+y̟3 ⊠ 1).

It has infinitesimal character x̟3 + y̟4 + ρ(sl3).

Lemma 8: Suppose x and y satisfy Lemma 4(ii). Then the spherical degenerate

principal series representation I12(x̟4 + y̟3) is irreducible.

Proof: Suppose I12(x̟4 +y̟3) is reducible. Hence it contains a non-spherical

irreducible subquotient, say π′
1. Now π′

1 will also satisfy Lemma 7 and it will

contain one of non-trivial minimal K1-types given in Table 2 or the last column

of Table 1. It is straightforward to check that none of these non-trivial K1-types

is a K1-type of the degenerate principal series representation.
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Now we can state the main result for E8. Let π1 and π2 be irreducible Harish–

Chandra modules of F4 and G2 respectively.

Theorem 9: Suppose π1 ⊠ π2 is a quotient of the minimal representation of

E8. Then:

(i) Suppose that π2 is a generic spherical principal series representation with

infinitesimal character λ2 = x̟1 + y̟2. Then π1 is the irreducible degen-

erate principal series representation I12(x̟4 + y̟3).

(ii) Suppose π1 = I12(x̟4 + y̟3) such that Lemma 4(ii) holds for these x

and y. Then π2 is a generic spherical principal series representation with

infinitesimal character λ2.

Proof: We will first prove (ii). By the correspondence of infinitesimal charac-

ters, the infinitesimal character of π2 satisfies Lemma 4. Hence π2 is a generic

principal series representation. By Lemma 2, it cannot be the non-spherical

representation and hence it is the spherical principal series. This proves (ii).

We will now prove (i). By the correspondence of infinitesimal character, the

infinitesimal character of π1 satisfies Lemma 7. Hence π2 contains one of the

minimal K1-types in Table 2 or the last column of Table 1. By Lemma 2,

the minimal K1-type must be the trivial K1-type so π1 is the unique spherical

representation with infinitesimal character x̟4 + y̟3 + ρ(sl3).

Now I12 := I12(x̟4 + y̟3) is also an irreducible spherical representation

with the same infinitesimal character as π1. Hence π1 = I12 because irreducible

spherical representations are uniquely determined by their infinitesimal charac-

ters. This completes the proof of Theorem 9.

3. Littlewood–Richardson (LR) Rule

The rest of this paper is devoted to the proof of Lemma 2. First we recall the

famous Littlewood–Richardson branching rule (LR rule for short) for the restric-

tion of representations from gln+m to gln ⊕ glm which we will use many times

later. Recall that a partition ν of n parameterizes an irreducible representation

Vν of gln.

Theorem 10 (Littlewood–Richardson rule): Let λ, µ and ν be a partition of

m + n, m and n, respectively. The multiplicity cµνλ of Vµ ⊠ Vν in Vλ is equal

to the number of way the Young diagram for µ can be expanded to the Young

diagram of λ by a strict ν-expansion. More precisely, if ν = (ν1, . . . , νk), a ν-

expansion is obtained by first adding µ1 boxes, with no two boxes in the same
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column, and putting the integer 1 in each of these boxes. We then add µ2 boxes

with a 2 in the same fashion, and so on. When integers in the boxes are listed

from right to left, starting with the top row and working down, an expansion

is called strict if for every t between 1 and µ1 + · · · + µk the first t integers on

this list contain each integer z between 1 and k − 1 at least as many times as

the next integer z + 1.

Remark: In order to calculate LR coefficients efficiently, we note the following

two properties necessarily satisfied by any strict ν-expansion:

• The integers in boxes are strictily increasing in each column, and are

increasing (but not necessarily strictly) in each row.

• The first row can contain only boxes with a 1, the second row can only

contain boxes with 1 and 2, and so on.

4. Proof of Lemma 2 (i) for E7

We will work exclusively with complexified Lie algebras.

Let k2 = sl2,l + sl2,s be the Lie algebra of K2 where sl2,l corresponds to a

long root, and sl2,s to a short root. We will identify the Lie algebra k = sl8 of

K with the set of 8 by 8 traceless matrices. Then sl2,l ⊆ sl8 can be arranged to

occupy upper-left 2 × 2 block in sl8. The centralizer of sl2,l in sl8 is gl6 where

the center of gl6 consists of the diagonal matrices

{d(z) := diag(−3z,−3z, z, z, z, z, z, z) : z ∈ C}.

The identification with gl6 is done so that the central elements d(z) act by z on

the one dimensional representation with the highest weight (1, 0, 0, 0, 0, 0). It

follows easily from LR rule that

(5) Vsl8(n̟4)
sl2,l =

n
∑

k=0

Vgl6
(k, k, 2k − n, 2k − n, k − n, k − n).

Next, using C6 = C2 ⊗ C3 we can embed sl2,s + gl3 into gl6. In this way we

have completely described an embedding of

k1 + k2 = gl3 + (sl2,l + sl2,s)

into k. In order to prove Lemma 2(i), we need to analyze the gl3-invariants of

representations appearing on the right hand side of (5). First of all, if the center

of gl3 acts trivially, then n = 2k in (5). We will now denote

Vk := Vgl6
(k, k, 0, 0,−k,−k).
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Next, we consider

k1 = gl3 ⊂ gl3 + gl3 ⊂ gl6

where gl3 is embedded diagonally. SupposeW⊗W ′ is a representation of gl3+gl3

appearing in the restriction of Vk. Then W ⊗W ′ gives rise to a one dimensional

invariant subspace of k1 if and only if W ′ = W ∗, the dual representation of W .

If λ = (λ1, λ2, λ3) is the highest weight of W , then (W ⊗W ∗)k1 is contained in

the weight 2
∑

i λi space for sl2,s.

In order to prove Lemma 2(i), we need to show that the representation S2(C2)

of sl2,s does not appear in V k1
k . To that end, it suffices to show that the dimen-

sions of the weight 2 space and the weight (−4) space for sl2,s are equal. This

follows immediately from the following proposition.

Proposition 11: Let W be a representation of gl3 of highest weight λ, and

let m(k, λ) denote the multiplicity of W ⊗W ∗ in Vk. If λ = (λ1, λ2, λ3) with

λ1 + λ2 + λ3 = 1, then m(λ, k) = m(λ−, k) where λ− = (λ1 − 1, λ2 − 1, λ3 − 1).

Proof: We need to calculate m(λ). This is accomplished by using LR rule in

the following lemma.

Lemma 12: Suppose W = Vgl3
(λ1, λ2, λ3). Assume first that λ2 ≤ 0. Then the

multiplicity of W ⊠W ∗ in Vk is zero unless k ≤ λ1 + λ2. If it is not zero then

it is equal to

{

min(λ2 − λ3, λ1) + 1 if k ≥ λ1 − λ3

min(λ2 − λ1 + k, λ3 + k) + 1 if k < λ1 − λ3.

To find the multiplicity when λ2 ≥ 0, we use the symmetry by interchanging

W with W ∗. In this case the multiplicity is

{

min(λ1 − λ2,−λ3) + 1 if k ≥ λ1 − λ3

min(λ3 − λ2 + k, k − λ1) + 1 if k < λ1 − λ3.

Proof: In order apply the LR rule, we consider U = detk⊗W , U ′ = detk ⊗W ∗

and E = detk⊗Vk. Hence U has the highest weight (a, b, c) = (k, k, k) + λ, U ′

has the highest weight (a′, b′, c′) = (k, k, k) + λ∗ and E has the highest weight

(2k, 2k, k, k, 0, 0). The multiplicity of U ⊠ U ′ in E is equal to m(k, λ).

From the LR rule, 0 ≤ c ≤ k and 0 ≤ b ≤ a ≤ 2k. The same is true for

a′, b′, c′. Since b + b′ = 2k, by interchanging the role of U and U ′, we may

assume that b ≤ k ≤ b′.

Let Y , Y ′ and Z denote the Young diagrams of U , U ′ and E respectively. We

place Y inside Z and fill in the remaining spaces in Z with the boxes from U ′.
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By the remark after Theorem 10 there is a unique way of filling the first 2

rows of Z, namely, c′ 1-boxes on the first row and, a− b = b′− c′ 1-boxes on the

second row and c′ 2-boxes on the second row. All the 3-boxes (there are c′ of

them) appear on the 4-th row of Z. The Young diagram is given in the figure

below.

Figure 1 1 2

1

3

Y

1

2y

c’

c’k

x 2

It shows that c′ ≥ b′ − k = λ2.

It remains to fill the last 2 rows of Z with 1-boxes and 2 boxes. Suppose

c + c′ < k as shown in the Young diagram above, then some of the boxes are

uniquely determined as shown in the shaded area. It remains to fill x with

1-boxes and 2-boxes. Let

z = max(0, k − c− c′) = max(0, a− c− k).

Now x has b− c− z boxes which is the same number as the remaining 1-boxes

to be filled. Hence the number of ways of filling is equal to the number of ways

of putting 1-boxes into y = min(c, k − c′). This is equal to

min(b− c− z, c, k − c′) + 1 = min(b − c− z, c, a− k) + 1

= min(b − c, b− a+ k, c, a− k) + 1.

If we substitute λi back into a, b, c above, and the condition k ≥ λ1 − λ3 (or

k < λ1−λ3), we would recover the multiplicity stated in the lemma. The lemma

is proved.

We will now prove Proposition 11. We first assume that λ2 ≤ 0 and λ1 +

λ2 + λ3 = 1, or λ2 < 0 and λ1 + λ2 + λ3 = −2. One easily checks that the

multiplicity is
{

λ2 − λ3 + 1 if k ≥ λ1 − λ3

λ2 − λ1 + k + 1 if k < λ1 − λ3.

Assume now that λ2 > 0 and λ1+λ2+λ3 = 1, or λ2 ≥ 0 and λ1+λ2+λ3 = −2.
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One easily checks that the multiplicity is
{

λ1 − λ2 + 1 if k ≥ λ1 − λ3

λ3 − λ2 + k + 1 if k < λ1 − λ3.

Proposition 11 follows.

5. Proof of Lemma 2(ii) for E7

Recall that in Section 4 we defined the following sequence of embeddings:

k1 = gl3 → gl3 × gl3 → gl6 → sl8 = k.

Hence we get an embedding of the complex groups GL3 into SL8. We will denote

this GL3 by GLc3. Since K(C) = SL8/µ2 this gives an embeding of GLc3/µ2 into

K(C). The group GLc3/µ2 can be identified with K1(C) = GL3 as follows. Let

zs ∈ GLc3 where z is a scalar matrix and s ∈ SL3. Then

(6) φ(zs) = z−2s

defines a map from GLc3 onto GL3 with kernel µ2. When pulled back by φ the

minimal K1(C)-type with the highest weight representation (1, 1, 0) becomes

the representation Vk1(−1,−1,−2) of GLc3.

5.1. We will begin the proof of Lemma 2(ii) which states that the subrepre-

sentation Vk1(−1,−1,−2) does not occur in the space of sl2,s-invariants on right

hand side of (5). First of all, notice that not all summands in (5) will contain

Vk1(−1,−1,−2). Indeed the central character of Vk1(−1,−1,−2) is −4. This

implies that 4(−n+ 2k) = −4 which is equivalent to 2k = n+ 1. Thus, we only

need to consider

V ′

k := Vgl6
(k, k,−1,−1,−k− 1,−k − 1).

Let λ = (λ1, λ2, λ3) and λ′ = (λ′1, λ
′
2, λ

′
3) denote two highest weights of gl3.

We would like to know the multiplicities of

(7) Vk1(−1,−1,−2) ⊂ Vgl3
(λ) ⊗ Vgl3

(λ′) ⊂ V ′

k

such that S =
∑

i λi − λ′i ∈ {0, 2}. For technical reason, we allow S = −2 as

well. Note that S is the weight for the torus of sl2,s acting on W ⊗W ′. Since

the central character, with respect to k1, is −4 =
∑

i λi + λ′i, we can rewrite

S =
∑

i

λi − λ′i =
∑

i

2λi − (λi + λ′i) = 2

(

∑

i

λi + 2

)

.
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Hence S ∈ {−2, 0, 2} is equivalent to
∑

i λi ∈ {−3,−2,−1}.

We consider the first inclusion in (7).

Lemma 13: The multiplicity of Vk1(−1,−1,−2) in

Vgl3
(λ1, λ2, λ3) ⊗ Vgl3

(λ′1, λ
′

2, λ
′

3)

is either 0 or 1. It is 1 if and only if one of the following situations holds:

(i) λ1 + λ′3 = −2, λ2 + λ′2 = λ3 + λ′1 = −1,

(ii) λ1 > λ2, λ1 + λ′3 = −1, λ2 + λ′2 = −2, λ3 + λ′1 = −1,

(iii) λ2 > λ3, λ1 + λ′3 = λ2 + λ′2 = −1, λ3 + λ′1 = −2.

Note that (iii) is obtained from (i) by interchanging the role of λ and λ′. The

proof is just another exercise in LR rule and we will leave it to the reader.

We will see later in the proof of Lemma 14 that in order for V ′
k to contain

Vgl3
(λ1, λ2, λ3) ⊗ Vgl3

(λ′1, λ
′
2, λ

′
3) it is necessary that we have

(8) k ≥ λ1 ≥ λ2 ≥ λ3 ≥ −k − 1, k ≥ λ′1 ≥ λ′2 ≥ λ′3 ≥ −k − 1.

From now on, we will refer to the three cases in Lemma 13 satisfying (8) as

Cases (i), (ii) and (iii) respectively. For Case (i), one can show that λ1 ≤ k − 1

Let m(λ, λ′, k) denote the multiplicities of Vgl3
(λ1, λ2, λ3)⊗Vgl3

(λ′1, λ
′
2, λ

′
3) in

V ′
k such that tensor product also contains Vk1(−1,−1,−2).

Lemma 14: Suppose S =
∑

i λi−λ
′
i = 0 or 2. Then the multiplicitiesm(λ, λ′, k)

of the three cases in Lemma 13 are given in the table below.

m(λ, λ′, k)
Case (i) if k ≤ λ1 − λ3 if λ2 ≥ 0 k − λ2 + λ3 + 1

if λ2 ≤ −1 k − λ1 + λ2 + 1
if k > λ1 − λ3 if λ2 ≥ 0 λ1 − λ2 + 1

if λ2 ≤ −1 λ2 − λ3 + 1
Case (ii) if k ≤ λ1 − λ3 − 1 if λ2 ≥ 0 k − λ2 + λ3 + 1

if λ2 ≤ −1 k − λ1 + λ2 + 2
if k > λ1 − λ3 − 1 if λ2 ≥ 0 λ1 − λ2

if λ2 ≤ −1 λ2 − λ3 + 1
Case (iii) if k ≤ λ1 − λ3 − 1 if λ2 ≥ 0 k − λ2 + λ3 + 2

if λ2 ≤ −1 k − λ1 + λ2 + 1
if k > λ1 − λ3 − 1 if λ2 ≥ 0 λ1 − λ2 + 1

if λ2 ≤ −1 λ2 − λ3

Proof: We would like to apply the LR rule so we set:

U = detk+1 ⊗Vgl3
(λ1, λ2, λ3), U ′ = detk+1 ⊗Vgl3

(λ′1, λ
′

2, λ
′

3)
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and

E′ = detk+1 ⊗V ′

k.

The highest weight of U is (a, b, c) = (k+1, k+1, k+1)+λ, the highest weight

of U ′ is (a′, b′, c′) = (k + 1, k + 1, k + 1) + λ′, and the highest weight of E′ is

(2k + 1, 2k + 1, k, k, 0, 0). Then

Vk1(2k + 1, 2k + 1, 2k) ⊂ U ⊗ U ′ ⊂ E′.

and the multiplicities are not affected. By interchanging U and U ′ if necessary,

we may assume that b ≤ k, that is, λ2 ≤ −1. Let Y , Y ′ and Z be the Young

diagrams of U , U ′ and E′. We embed Y into Z and we fill Z with the boxes of

Y ′. An almost identical argument as before gives the same figure as Figure 1.

Here z = max(0, k − c − c′). The number of 2-boxes in the second row is not

less than the number c′ of 3-boxes.

In all cases the number of remaining 1-boxes is not greater than the number

of boxes in x. There are b− c− z − e remaining 1-boxes; where e = 0 in Cases

(i) and (ii) and e = 1 in Case (iii). Hence the multiplicity of U ⊠ U ′ in E′ is

equal to the number of ways of filling the remaining 1-boxes in y = min(c, k−c′)

which is

min(c, k − c′, b− c− z − e) + 1 = min(c, k − c′, b− c− e, b− k + c′ − e) + 1.

More explicitly, the multiplicity in the three cases is:

Case (i): min(c, a− k, b− c, k − a+ b) + 1

= min(λ3 + k + 1, λ1 + 1, λ2 − λ3, k − λ1 + λ2) + 1

Case (ii): min(c, a− k − 1, b− c, k + 1 − a+ b) + 1

= min(λ3 + k + 1, λ1, λ2 − λ3, k + 1 − λ1 + λ2) + 1

Case (iii): min(c, a− k − 1, b− c− 1, k − a+ b) + 1

= min(λ3 + k + 1, λ1, λ2 − λ3 − 1, k − λ1 + λ2) + 1.

The fact that
∑

i λi ∈ {−3,−2,−1} and λ2 ≤ −1 implies that λ1 +λ3 +1 ≥ λ2.

Then the above multiplicity simplifies to

Case (i): min(λ2 − λ3, k − λ1 + λ2) + 1

Case (ii)’: min(λ2 − λ3, k + 1 − λ1 + λ2) + 1

Case (iii): min(λ2 − λ3 − 1, k − λ1 + λ2) + 1.

Here Case (ii)’ refers to Case (ii) except the situation where
∑

i λi = −3 and

λ2 = −1, which is of no use to us.



Vol. 159, 2007 ON LOCAL LIFTS FROM G2(R) TO Sp6(R) AND F4(R) 363

By interchange the role of λ and λ′, we obtain the cases where λ2 ≥ 0. This

is where we need the fact that
∑

i λ = −3 so that
∑

i λ
′
i = −1.

The table in Lemma 14 follows immediately by comparing the calculations

made above. This proves Lemma 14.

Proof of Lemma 2(ii) for E7: In order to prove the lemma, it suffices to show

that the dimensions of the weight 2 space and weight 0 space for sl2,s are equal.

This is equivalent to

(9)
∑

m(λ, λ′, k) =
∑

m(λ, λ′, k)

where the first (resp. second) sum is taken over all (λ, λ′) satisfying Lemma 13

and such that S =
∑

i λi − λ′i = 2 (resp. S = 0). We have seen before that

S = 2 (resp. S = 0) is equivalent to
∑

i λi = −1 (resp.
∑

i λi = −2).

We refer to Lemma 14. Suppose λ = (λ1, λ2, λ3) satisfies
∑

i λ = −1. We

define

λ̃ = (λ̃1, λ̃2, λ̃3) = (−λ3 − 1,−λ2 − 1,−λ1 − 1).

We gather some properties of the transformation λ 7→ λ̃.

(a) Since
∑

i λ = −1, we have
∑

i λ̃ = −2.

(b) We have λ1 − λ3 = λ̃1 − λ̃3, λ1 − λ2 = λ̃2 − λ̃3. λ2 − λ3 = λ̃1 − λ̃2.

(c) If λ2 ≥ 0, then λ̃2 ≤ −1. Conversely if λ2 ≤ −1, then λ̃2 ≥ 0.

(d) If λ belongs to Case (i) (resp. Case (ii), Case (iii)), then λ̃ also belongs to

Case (i) (resp. Case (iii), Case (ii)).

We will say more about (d). Indeed if we refer to the table in Lemma 14, the

transformation λ 7→ λ̃ preserves multiplicities. For example, if we refer to the

table in Lemma 14, then the transformation sends the first (resp. second) line of

Case (i) for (λ1, λ2, λ3) to the second (resp. first) line of Case (i) for (λ̃1, λ̃2, λ̃3).

This proves (9) and Lemma 2(ii).

6. Proof of Lemma 2 (i) for E8

6.1. Lie subalgebras of e8. Let

so16, sl
F
2,l + sp6 and slG2,l + sl2,s

be the complexified Lie algebras of the maximal compact subgroups K, K1, K2

of E8,8, F4,4 and G2,2 respectively. The Lie algebra so16 contains

so12 + so4 = so12 + (slF2,l + slG2,l).
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The standard representation C12 of so12 can be written as a product of two

symplectic spaces C6⊗C2. This gives an embedding of sp6 + sl2,s into so12, and

the embedding of k1 + k2 into k is described completely. Using the notation of

the root system of e8 in [1], slF2,l and slG2,l correspond to the simple roots ε1 + ε2

and ε2 − ε1 respectively.

We need one additional subalgebra of so12. If we decompose the standard

representation C12 = C6 + (C6)∗ of so12 into two isotropic subspaces, then we

get sp6 ⊂ gl6 ⊂ so12. The center gl1 of gl6 forms a torus of sl2,s.

Recall that so16 has two maximal parabolic subalgebras with Levi component

isomorphic to gl8. We set glG8 and glG2 to be the Lie subalgebras such that

so16 ⊃ glG8 ⊃ gl6 + glG2 = gl6 + (gl1 + slG2,l).

Similarly we define glF8 and glF2 . Note that the center of glG2 is equal to the split

torus of slF2,l and the center of of glF2 is equal to the split torus of slG2,l.

Two branching rules. We will state two branching rules that we will need

later. The first branching rule is a special case of one due to T. Enright and

M. Hunziker. One can also give a direct proof using Borel–Weil theorem.

Lemma 15: Let ̟8 denote the fundamental weight corresponding to the half-

spin representation of so16 acting on p. Then ̟8 is perpendicular to the roots

of glF8 , and

(i)

Vso16
(n̟8)|glF8

=
∑

Vgl8
(a1, a1, a2, a2, a3, a3, a4, a4)

where the sum is taken over n/2 ≥ a1 ≥ · · · ≥ a4 ≥ −n/2 such that

ai − n/2 ∈ Z, and

(ii)

Vso16
(n̟8)|glG8

=
∑

Vgl8
(a1, a2, a2, a3, a3, a4, a4, a5)

where the sum is taken over n/2 ≥ a1 ≥ · · · ≥ a5 ≥ −n/2 such that

ai − n/2 ∈ Z.

We now state the second branching rule.

Lemma 16: Consider sp6 in gl6. Let λ = (λ1, . . . , λ6) be a highest weight of

gl6.

(i) The dimension of (Vgl6
(λ))sp6 is either 0 or 1. It is 1 if and only if λ1 = λ2,

λ3 = λ4, and λ5 = λ6.
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(ii) The representation Vgl6
(λ) contains the representation Sr(C6) of sp6 with

either multiplicity 0 or 1. It is 1 if and only if

r = λ1 − λ2 + λ3 − λ4 + λ5 − λ6.

Proof: Part (i) follows from the Cartan–Helgason theorem (see page 535 in

[6]). For (ii), we consider

Vgl6
(λ) ⊗ Sr(C6) =

∑

λ′

cλ
′

λ,rε1Vgl6
(λ′)

as representations of gl6. Here the LR number cλ
′

λ,rε1
is either 0 or 1. The

representation Vgl6
(λ) contains Sr(C6) of sp6 if and only if some Vgl6

(λ′) on the

right hand side of the equation contains the trivial representation of sp6. Now

(ii) follows from (i).

Lemma 17: Suppose Vso16
(n̟8) contains the irreducible representation

Ss(C2) ⊠ Sr(C6) of slF2,l + sp6, then r ≥ s and r ≡ s (mod 2).

Proof: If Vgl6
(λ) contains Sr(C6) of sp6, then by Lemma 16(i),

r =

3
∑

i=1

λ2i−1 − λ2i.

By Lemma 15(ii), it is enough to check if Ss(C2) ⊠ Vgl6
(λ) is a submodule of

VglF8
(a, a, b, b, c, c, d, d). In other words, we need to find the values of s such that

the LR number c
(a,a,b,b,c,c,d,d)
(s+f,f),λ 6= 0 where f is arbitrary. The lemma follows from

a direct calculation.

Proposition 18: The generic principal series representations of F4,4 are not

quotients of the minimal representations of E8,8.

Proof: Indeed there are three families of generic principal series representa-

tions and they contain the K1-types S4(C2) ⊠ C, S2(C2) ⊗ C and S5(C2) ⊠ C6

respectively. On the other by Lemma 17 these K1-types do not appear in the

the restriction of the minimal representation.

We will begin the proof of Lemma 2(i). We need to show that the repre-

sentation S2(C2) of sl2,s does not appear in (Vso16
(n̟8))

slG
2,l

+slF
2,l

+sp6 . First of

all, by the standard branching rules for so16 ↓ so15 ↓ · · · ↓ so4 = slG2,l + slF2,l,
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the space of invariants (Vso16
(n̟8))

slG2,l+slF2,l is zero if n is odd. Hence we will

assume that n is even. Next, by Lemma 17,

(Vso16
(n̟8))

slG2,l+slF2,l+sp6 = (Vso16
(n̟8))

glG2 +sp6 .

Here glG2 = gl1 + slG2,l where gl1 is the torus of slF2,l. By Lemma 16(i) Vgl6
(λ)

contains 1sp6
if and only if λ = (a, a, b, b, c, c). For such a λ, we have

(10)

1sp6
⊠ 1glG

2
⊂ Vgl6

(λ) ⊠ 1glG
2
⊂ VglG

8
(a1, a2, a2, a3, a3, a4, a4, a5) ⊂ Vso16

(n̟8).

Here a, b, c, ai ∈ Z. The first and the last containments are of multiplicity one

due to Lemmas 16(i) and 15(ii) respectively.

The center gl1 of gl6 is the torus of sl2,s and it acts on Vgl6
(λ) by

∑

i λi. We

will show that the representation S2(C2) of sl2,s does not occur by showing that

the dimensions of the weight 4 space and the weight (−2) space of sl2,s are the

same on Vso16
(n̟8)

slG
2,l

+slF
2,l

+sp6 . Now, Vgl6
(λ) contributes to the weight 4 or

-2 if 2a+ 2b + 2c = 4 or −2, respectively. Thus, in order to obtain the desired

result it suffices to show the following.

Proposition 19: Let λ = (a, a, b, b, c, c) be such that a + b + c = 2 and let

m(a, b, c; a1, a2, . . . , a5) be the multiplicity of the middle inclusion in (10). Then

m(a, b, c; a1, a2, . . . , a5) = m(a− 1, b− 1, c− 1; a1, a2, . . . , a5).

Proof: In order to verify the proposition we need to calculate the multiplicities.

This will be accomplished using the Littlewood–Richardson rule in the following

lemma.

Lemma 20: Suppose a + b + c = ±1,±2. Let m = m(a, b, c; a1, a2, . . . , a5) be

the multiplicity of the middle inclusion in (10). If m 6= 0, then it is necessary

that a1 ≥ a ≥ b ≥ c ≥ −a1 and

(11) λ2 = a2, λ4 = a3, λ6 = a4, a5 = −a1.

Furthermore
m

b ≥ 0 a− c ≤ a1 a− b+ 1
a− c ≥ a1 a1 − b+ c+ 1

b ≤ 0 a− c ≤ a1 b− c+ 1
a− c ≥ a1 a1 − a+ b+ 1

If m takes negative values in the above table, then we set m = 0.

Proof: In order to apply the LR rule we twist representations with detn/2. Let

a′i = ai+n/2, a′ = a+n/2, b′ = b+n/2, c′ = c+n/2. First we place the Young
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diagram Y of Vgl6
(a′, a′, b′, b′, c′, c′) into that of Vgl8

(a′1, a
′
2, a

′
2, . . . , a

′
5). Next we

will fill the remaining spaces with n/2 copies of 1-boxes and 2-boxes. We show

the Young diagrams below:

1

2

2

c’ a’ 15

Y

a’a’

y

x

b’

1

Without going into the details, LR rule shows that a = a2, b = a3, c = a4,

a5 = −a1. It remains to fill the shaded region x and y with n/2 − c′ = −c

2-boxes.

First suppose b ≥ 1. Since a+ b+ c = ±1,±2, we have

Length of y ≥ −c ≥ Length of x

By the LR rule, the multiplicity m is

min(a′ − b′, a′1 − a′, a′1 − b′ + c) + 1 = min(a− b+ 1, a1 − a+ 1, a1 − b+ c+ 1).

Since a+ b+ c ≤ 2, a1 − a+ 1 ≥ a1 − b+ c. This proves the case b ≥ 1.

Next by sending (a, b, c) 7→ (−c,−b,−a) and ai 7→ a5−i+1, we pass from the

case b ≥ 1 to b ≤ −1.

The proof of the case b = 0 is similar and easier. The lemma is proved.

The proof of proposition is now identical to the proof of Proposition 11. We

leave details to the reader.

7. Proof of Lemma 2(ii) for E8

We continue with the notations in §6.1. The proof is almost identical with the

one in §6 but more tedious. We need show that the representations C2
⊠C6 and

S2(C2)⊠1sp6
of slF2,l+sp6 do not appear in Vso16

(n̟8)
slG

2,l
+sl2,s . The statement

for S2(C2) ⊠ 1sp6
follows immediately from Lemma 17. We are left now with

C2
⊠ C6.
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Once again, by the standard branching rules for so16 ↓ so15 ↓ · · · ↓ so4 =

slG2,l + slF2,l, HomslG
2,l

+slF
2,l

(1slG
2,l

⊠ C2, Vso16
(n̟8)) is zero unless n is odd. Hence

we will assume that n is odd. Next, by Lemma 17,

Homsp6+slG
2,l

+slF
2,l

(C6
⊠ 1slG

2,l
⊠ C

2, Vso16
(n̟8)) =

Homsp6+glG2
(C6

⊠ C−1/2, Vso16
(n̟8))

where C−1/2 = Vgl2
(−1/2,−1/2) is a one-dimensional representation of glG2 . We

recall Lemma 16(ii) that Vgl6
(λ) contains C6 of sp6 if and only if λ is of the

form

λI = (a+ 1/2, a− 1/2, b, b, c, c),

λII = (a, a, b+ 1/2, b− 1/2, c, c) or

λIII = (a, a, b, b, c+ 1/2, c− 1/2).

We have inserted the ‘1/2’s so that there is more symmetry in our calculations.

For λ = λI , λII or λIII , we have by Lemma 15(ii),

(12)

C
6
⊠ C−1/2 ⊂ Vgl6

(λ) ⊠ C−1/2 ⊂ VglG8
(a1, a2, a2, a3, a3, a4, a4, a5) ⊂ Vso16

(n̟8).

where λ and ai lie in 1
2Z\Z. The first and the last containments are of multi-

plicity one due to Lemma 16(ii) and 15(ii) respectively.

The center gl1 of gl6 is the torus of sl2,s and it acts on Vgl6
(λ) by

∑

i λi. We

will prove that the trivial representation of sl2,s does not occur, by showing that

the dimensions of the 0-eigenspace and the 2-eigenspace of gl1 are the same. The

action of gl1 implies that 2a+ 2b+ 2c = 0 or 2, that is, a+ b+ c = 0 or 1.

Let m = m(a, b, c; a1, a2, . . . , a5) denote multiplicity of the middle inclusion

in (12). There is no ambiguity as to whether we are using λ = λI , λII or λIII in

the definition of m. This is because for λI (resp. λII , λIII), the entry a (resp.

b, c) is an integer while the rest of the entries are odd multiplies of 1/2.

Lemma 21: Let λ = λI , λII or λIII and m = m(a, b, c; a1, a2, . . . , a5) as above.

Suppose a+ b+ c = −1, 0 or 1. If m 6= 0, then it is necessary that all the entries

in λ lies in the closed interval [−a1, a1] and

(13) λ2 = a2, λ4 = a3, λ6 = a4, a5 = −a1.
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Furthermore

λ m

λI b ≥ 1
2 a− c ≤ a1 a− b+ 1

2
a− c ≥ a1 a1 − b+ c+ 1

2
b ≤ − 1

2 a− c ≤ a1 b− c+ 1
a− c ≥ a1 a1 − a+ b+ 1

λII b ≥ 1 or (b = 0 and a = −c) a− c− 1
2 ≤ a1 a− b+ 1

2
a− c− 1

2 ≥ a1 a1 − b+ c+ 1
b ≤ 0 a− c− 1

2 ≤ a1 b− c+ 1
2

a− c− 1
2 ≥ a1 a1 − a+ b+ 1

λIII b ≥ 1
2 a− c ≤ a1 a− b+ 1

a− c ≥ a1 a1 − b+ c+ 1
b ≤ − 1

2 a− c ≤ a1 b− c+ 1
2

a− c ≥ a1 a1 − a+ b + 1
2

If m takes negative values in the above table, then we set m = 0.

Proof: First we observe a symmetry. By sending (a, b, c) 7→ (−c,−b,−a) and

ai 7→ a5−i+1, we send λI to λIII , and (λII , b ≥ 1) to (λII , b ≤ −1). The

multiplicity m remains unchanged by these transformations.

We will now prove the lemma for λI which implies the lemma for λIII by the

symmetry.

Again, in order to apply the LR rule we twist representations with detn/2.

Thus, let a′i = ai+n/2, a′ = a+(n−1)/2, b′ = b+n/2, c′ = c+n/2 and x′ = x+

n/2 = (n−1)/2. First we place the Young diagram Y of Vgl6
(a′+1, a′, b′, b′, c′, c′)

into that of Vgl8
(a′1, a

′
2, a

′
2, . . . , a

′
5). Next we will fill the remaining spaces with

(n−1)/2 copies of 1-boxes and 2-boxes. The Young diagram is almost identical

to the one in the proof of Lemma 20 except that Y has one more box in the first

row. A check on the diagram shows that a = a2, b = a3, c = a4, a5 = −a1. It

remains to fill the shaded region x and y with (n−1)/2−c′ = −1/2−c 2-boxes.

Suppose b ≥ 1/2. Since a+ b+ c = 0,±1, we have

Length of y ≥ −1/2 − c ≥ Length of x

The multiplicity is nonzero if and only if a′1 − b′ − 1 ≥ −1/2 − c, that is,

b− c ≤ a1 − 1/2. If it is nonzero, then it equals

min
(

a− b −
1

2
, a′1 − a−

n+ 1

2
, a′1 −

n+ 1

2
− b+ c

)

+ 1.

Finally one checks that the second term is greater than or equal to the third

term.
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The proof is similar for b ≤ −1/2. This proves the lemma for λI .

We will not prove the lemma for λII but we will give an outline. First we

consider b ≤ 0. Next we apply the symmetry to get b ≥ −1. Note that the

symmetry fails to produce the formula for b = 0.

Proof of Lemma 2(ii) for E8: Fix a1 ∈ 1
2Z\Z. Using (13) we set

µ(a, b, c) := m(a, b, c; a1, a2 = λ2, a3 = λ4, a4 = λ6, a5 = −a1).

We note that a1 ≥ a ≥ b ≥ c ≥ −a1. For any other values a, b, c where the

inequalities does not hold, we set µ(a, b, c) = 0. Let

S =
{

(α, β, γ) ∈
(1

2
Z\Z

)3

: a1 ≥ α ≥ β ≥ γ ≥ −a1, α+ β + γ =
1

2

}

For (α, β, γ) ∈ S, we define three differences

d1 = µ(α+
1

2
, β, γ) − µ(α−

1

2
, β, γ),

d2 = µ(α, β +
1

2
, γ) − µ(α, β −

1

2
, γ),

d3 = µ(α, β, γ −
1

2
) − µ(α, β, γ −

1

2
).

Lemma 22: d1 + d2 + d3 = 0.

Proof: The lemma is an immediate consequence of the following table.

d1 d2 d3

β ≥ 1
2 α− γ ≤ a1 −

1
2 1 −1 0

α− γ ≥ a1 + 1
2 a1 ≤ β − γ − 3

2 0 0 0
a1 ≥ β − γ − 1

2 0 −1 1

β ≤ − 1
2 α− γ ≤ a1 −

1
2 0 1 −1

α− γ ≥ a1 + 1
2 a1 ≤ α− β − 3

2 0 0 0
a1 ≥ α− β − 1

2 −1 1 0

The proof of the table follows from the tedious case by case checking by hand.

We will leave this to the reader.

Lemma 22 implies that the 2-eigenspace and the 0-eigenspace of torus of sl2,s

has the same dimension, that is, the trivial representation of sl2,s does not occur.

This proves Lemma 2(ii).
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